Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks

Project: Research project

Project Details

Description

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The contamination of hydrologic systems such as oceans, rivers, lakes, and aquifers with particulates has emerged as one of the most urgent environmental issues of today. Recent field data suggests a clear presence of solid contaminants, such as microplastics and pathogens, in fractured aquifers which make up a significant portion of the world's drinking water supply and in other subsurface media. Understanding and predicting particulate transport in subsurface fracture flows poses both fundamental and practical challenges, as it requires a quantitative understanding of particle/fluid transport across many length scales that range from individual particles to a network of fractures. To overcome these challenges, our research will uncover the physical origin of the coupled particle/fluid transport and its effects on the large-scale particle transport, by combining laboratory experiments, theoretical modeling, and computations both at the particle scale and the network scale. The resultant particulate transport models will greatly improve our predictive capabilities for wide-ranging subsurface processes, which include contaminant transport, geological nuclear waste disposal, hydraulic fracturing, and enhanced geothermal systems. In addition, this project will provide training opportunities for graduate students and post-docs from diverse backgrounds, as well as collaborative educational activities for high school summer interns who will gain project-based experience as part of interdisciplinary teams.

The investigators will explore and quantify the effects of two-way coupled particle/fluid motion on particulate transport in fractured media, across a wide range of scales. Towards this end, they will combine detailed laboratory experiments as well as particle-resolving simulations at the single-fracture scale, with novel upscaling approaches to the fracture network scale. Traditional particulate transport models in subsurface systems treat particles as passive scalars that do not affect the surrounding flow field, although their preliminary experiments demonstrate that particles can actively modify the fluid flow and even trigger hydrodynamic instabilities. By overcoming this deficiency of traditional models, this research project will provide the next generation of large-scale subsurface particulate transport models. Specifically, they will address three research questions: 1) the microscopic origins of the two-way coupling; 2) the hydrodynamic instabilities and dispersion in a single fracture; 3) the effects of two-way coupling on network-scale particulate transport. They will conduct systematic laboratory experiments to characterize particle-scale instabilities and collective particle behavior at the single fracture scale, which will be verified and supplemented by particle-resolving Navier-Stokes simulations of concentrated suspensions in rough fractures. The resulting data will provide effective dispersivities and stochastic rules of particulate motion that capture the two-way coupling effects on particulate transport. These results from the single fracture study will be incorporated into fracture network models, in order to assess the influence of two-way coupling on particulate transport at the network scale and to develop upscaled particulate transport models.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

StatusActive
Effective start/end date8/1/217/31/24

Funding

  • National Science Foundation: $348,253.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.