MRI: Acquisition of a portable photosynthesis system for plant ecophysiology research

Project: Research project

Project Details

Description

An award is made to Augsburg College to purchase a Li-Cor LI-6400XTR portable photosynthesis system to investigate the physiology of economically important plants infected by fungi and also to study mathematical modeling of ecophysiological processes. The portable photosynthesis system will support interdisciplinary research in the plant biological sciences, mathematics, and environmental sciences, and collaboration between a liberal arts college and a large research institution. The LI-6400XTR will be used for a wide range of research activities including: 1) The physiology and productivity of economically important plants colonized by pathogens that do not cause symptoms of disease; 2) The functional role of endophytes in plants; 3) The impact of sublethal infections by soilborne pathogens of roots on plant productivity; and 4) The measurement of leaf-level physiological processes to parameterize ecosystem models of carbon cycling. This research will largely focus on soybeans as a model plant because it is economically important and grown throughout the U.S.

The portable photosynthesis system will be used for faculty research and undergraduate research in plant biology, environmental science, and mathematics. Augsburg College is a primary undergraduate institution and dedicated to providing training and research opportunities for undergraduate students. Undergraduate students are introduced to research early in the curriculum, and many students participate in faculty led research. The portable photosynthesis system will generate data sets that are large and complex, resulting in research students to be involved in extensive quantitative data analysis in biology and mathematics. The instrument will also improve collaborative and interdisciplinary research projects with faculty at the University of Minnesota. Results from these collaborations will improve our understanding of plant-fungal interactions, and will be applied to improving soybean yield and productivity. New research findings will be published in peer reviewed journals and presented at national scientific meetings

StatusFinished
Effective start/end date9/1/138/31/15

Funding

  • National Science Foundation: $122,684.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.