Role of a pro-apoptotic Bcl-2 protein in the survival and death of leukemia cells

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): The proposed research focuses on a novel regulatory mechanism and survival function for human Noxa, a pro- apoptotic 'BH3-only' Bcl-2 family protein, fast emerging as an important therapeutic target in hematological malignancies. Activated Noxa interacts with its binding partner, pro-survival Bcl-2 family member Mcl-1L, to facilitate the release of cytochrome c into the cytosol. Noxa/Mcl-1L interactions play a crucial role in the survival and death of cells of the immune system and Noxa is required for glucose deprivation-induced apoptosis of proliferating human lymphocytes and hematopoietic cancer cell lines. This BH3-only protein is stably and constitutively expressed in a majority of leukemias. Preliminary observations have determined that Noxa is phosphorylated on a serine residue by the kinase, Cdk5, in the presence of nutrients and glucose and have identified two cytosolic multi-protein particles that sequester the modified protein. Studies also suggest that modified, sequestered Noxa regulates glucose metabolism and has a pro-survival function. The hypothesis that human Noxa is post-translationally regulated and that it plays both pro-survival and pro-apoptotic roles in leukemia cells will be tested through three specific aims. The first aim is directed at determining how post-translationally modified human Noxa plays a role in aerobic glycolysis and cell survival. The contribution of Cdk5 and the glucose-sensitive PI3K/Akt signaling pathway to this novel metabolic function of Noxa will also be investigated. The cytosolic multi-protein particles containing Noxa will be purified and characterized; their functional relevance and role in regulating Noxa and aerobic glycolysis will be determined. The second aim is directed at investigating apoptotic stimuli and signaling pathway/s that lead to the activation of Noxa pro-apoptotic function in leukemia cells. The role of the tumor suppressor phosphatase, PHLPP2, in activating both Noxa and apoptosis in leukemia cells will be determined. Novel strategies that combine specific inhibitors of Cdk5 with inhibitors of glycolysis will be tested on leukemia cell lines and patient samples and later validated in murine xenograft assays. The ability of non- phosphorylatable mutants and peptides of human Noxa to promote apoptosis will also be determined. The third aim is directed at developing a conditional transgenic mouse model to investigate the role of human Noxa in leukemogenesis and glucose metabolism. The human BH3-only protein will be expressed in hematopoietic lineage cells, employing the Vav promoter-tetracyline transactivator (Vav-tTA)-driven doxycycline repressible system. The transgenic model will be utilized for determining whether expression of human Noxa promotes leukemogenesis, whether sustained expression of the protein is required for maintaining the leukemic phenotype, and whether constitutive expression of Noxa in lymphocytes alters their ability to metabolize glucose for energy generation. Preliminary studies show that Noxa, a canonical tumor suppressor BH3-only protein, also has a survival function in hematopoietic cancers. The proposed research will identify novel signaling pathways and intermediates involved in regulating Noxa in these dual and opposing roles, and should lead to the development of new therapeutic strategies for targeting this protein in lymphoid and myeloid leukemias.
StatusFinished
Effective start/end date7/8/1112/31/17

Funding

  • National Cancer Institute: $299,106.00
  • National Cancer Institute: $305,284.00
  • National Cancer Institute: $306,473.00
  • National Cancer Institute: $301,927.00
  • National Cancer Institute: $296,169.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.