Upgrade of a 500 MHz NMR Spectrometer for Applications in Biomedical Research

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): Nuclear magnetic resonance (NMR) spectroscopy is the most valuable spectroscopic tool for those who make and/or structurally characterize biomedically relevant organic, organometallic, and polymeric compounds. Access to high quality NMR data is critical to research progress in each of these fields. The modern capabilities of the requested upgrade to our current 500 MHz NMR spectrometer will greatly enhance progress in a myriad of biomedically-motivated projects currently under study at Minnesota. Specifically, the types of projects that will benefit from this instrument include the synthesis of antitumor agents, antibiotics, vaccines, and other bioactive compounds; creation of new sensors for monitoring levels of clinically relevant electrolytes; exploration of important enzyme pathways and functions; bioinorganic studies of models of metalloenzymes; development of new organometallic-based methods applicable to the (asymmetric) synthesis of pharmaceutical agents; determination of structures of new biologically active natural and unnatural products; design of new contrast agents for imaging; the development of new polymer-based vehicles and strategies for both drug and gene delivery; studies of polymeric artificial tissues; and exploratio of carbohydrate-based dendrimers and polymers for use as novel 'theranostic' agents. More specifically, we request funds to upgrade our existing 500 MHz NMR spectrometer with a new console, state-of-the-art probe and automatic sample changer. This spectrometer will be housed in the NMR Laboratory in the Department of Chemistry, where it will be used to perform one- and two-dimensional multinuclear experiments on small and large molecules being synthesized and studied for biomedical research purposes here at the University of Minnesota. This facility serves the needs of nearly 300 researchers, approximately half of whom are in the research groups of the Major and Minor Users in this application. We expect our large user base to benefit tremendously from the versatility afforded by the requested upgrade. Given the combined features of the new probe, which includes automatic tuning and matching capabilities, and autosampler, we will be able to generate, with minimal operator intervention, high quality spectral data for any sequence of experiment(s) with any sample type (small molecules or macromolecules; organic or inorganic; 1H, 13C, 19F, 31P, 2H, 15N, 17O, 11B, 51V, 119Sn, 59Co, or 29Si). This is very powerful. These capabilities far exceed what we can do with our current instrument. With this upgrade we will obtain higher quality data and more data. As a direct consequence, both the pace of discovery and depth of understanding will be advanced.
StatusFinished
Effective start/end date4/21/124/20/14

Funding

  • NIH Office of the Director: $378,000.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.