A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy

Jennifer Davis, L. Craig Davis, Robert N. Correll, Catherine A. Makarewich, Jennifer A. Schwanekamp, Farid Moussavi-Harami, Dan Wang, Allen J. York, Haodi Wu, Steven R. Houser, Christine E. Seidman, Jonathan G. Seidman, Michael Regnier, Joseph M. Metzger, Joseph C. Wu, Jeffery D. Molkentin

Research output: Contribution to journalArticlepeer-review

158 Scopus citations

Abstract

Summary The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.

Original languageEnglish (US)
Pages (from-to)1147-1159
Number of pages13
JournalCell
Volume165
Issue number5
DOIs
StatePublished - May 19 2016

Bibliographical note

Funding Information:
This work was supported by grants from the National Institutes of Health (J.D.M., M.R., S.R.H., C.E.S., J.G.S., J.M.M, J.C.W., and J.D) and by the Howard Hughes Medical Institute (to J.D.M. and C.E.S.).

Funding Information:
National Institutes of Health

Publisher Copyright:
© 2016 Elsevier Inc.

Fingerprint

Dive into the research topics of 'A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy'. Together they form a unique fingerprint.

Cite this