Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord

Andrea J. Mothe, Iris Kulbatski, Ann Parr, Michael Mohareb, Charles H. Tator

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Neural stem/progenitor cells (NSPCs) capable of generating new neurons and glia reside in the adult mammalian spinal cord. Transplantation of NSPCs has therapeutic potential for spinal cord injury, although there is limited information on the ability of these cells to survive and differentiate in vivo. Neurospheres cultured from the periventricular region of the adult spinal cord contain NSPCs that are self-renewing and multipo-tent. We examined the survival, proliferation, migration, and differentiation of adult spinal cord NSPCs generated from green fluorescent protein (GFP) transgenic rats and transplanted into the intact spinal cord. The grafted GFP-expressing cells survived for at least 6 weeks in vivo and migrated from the injection site along the rostro-caudal axis of the spinal cord. Transplanted cells transiently proliferated following transplantation and approximately 17% of the GFP-positive cells were apoptotic at 1 day. Also, better survival was seen with NSPCs transplanted as neurospheres in comparison to NSPCs transplanted as dissociated cells. By 1 week posttransplantation, grafted cells primarily expressed an oligodendrocyte phenotype and only 2% differentiated into astrocytes. Approximately 75% versus 38% of the grafted cells differentiated into oligodendrocytes after transplantation into spinal white versus gray matter, respectively. This is the first report to examine the time course of cell survival, proliferation, apoptosis, and phenotypic differentiation of transplanted NSPSs in the spinal cord. This is also the first report to examine the differences between transplanted NSPCs grafted as neurospheres or dissociated cells, and to compare the differentiation potential after transplantation into spinal cord white versus gray matter.

Original languageEnglish (US)
Pages (from-to)735-751
Number of pages17
JournalCell transplantation
Volume17
Issue number7
DOIs
StatePublished - 2008

Keywords

  • Adult neural stem/progenitor cells
  • Apoptosis
  • Differentiation
  • Neurospheres
  • Oligodendrocytes
  • Proliferation
  • Survival

Fingerprint

Dive into the research topics of 'Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord'. Together they form a unique fingerprint.

Cite this