Advice refinement in knowledge-based SVMs

Gautam Kunapuli, Richard MacLin, Jude W. Shavlik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Knowledge-based support vector machines (KBSVMs) incorporate advice from domain experts, which can improve generalization significantly. A major limitation that has not been fully addressed occurs when the expert advice is imperfect, which can lead to poorer models. We propose a model that extends KBSVMs and is able to not only learn from data and advice, but also simultaneously improves the advice. The proposed approach is particularly effective for knowledge discovery in domains with few labeled examples. The proposed model contains bilinear constraints, and is solved using two iterative approaches: successive linear programming and a constrained concave-convex approach. Experimental results demonstrate that these algorithms yield useful refinements to expert advice, as well as improve the performance of the learning algorithm overall.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
PublisherNeural Information Processing Systems
ISBN (Print)9781618395993
StatePublished - 2011
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: Dec 12 2011Dec 14 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Conference

Conference25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1112/14/11

Fingerprint

Dive into the research topics of 'Advice refinement in knowledge-based SVMs'. Together they form a unique fingerprint.

Cite this