An alternate form of Ku80 is required for DNA end-binding activity in mammalian mitochondria

G. Coffey, Colin R Campbell

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Mammalian mitochondrial DNA end-binding activity is nearly indistinguishable from that of nuclear Ku. This observation led to the hypothesis that mitochondrial DNA end-binding activity is in part dependent upon Ku80 gene expression. To test this hypothesis, we assayed for Ku activity in mitochondrial extracts prepared from the xrs-5 hamster cell line that lacks Ku80 mRNA expression. Mitochondrial protein extracts prepared from this cell line lacked the DNA end-binding activity found in similar extracts prepared from wild-type cells. Azacytidine-reverted xrs-5 cells that acquired nuclear DNA end-binding activity also acquired mitochondrial DNA end-binding activity. Western blot analysis of human mitochondrial protein extracts using a monoclonal antibody specific for an N-terminal epitope of Ku80 identified a protein with an apparent molecular weight of 68 kDa. This mitochondrial protein was not detected by a monoclonal antibody specific for an epitope at the C-terminal end of Ku80. Consistently, while both the N- and C-terminal Ku80 monoclonal antibodies supershifted the nuclear DNA end-binding complex on an electrophoretic mobility shift assay, only the N-terminal monoclonal antibody supershifted the mitochondrial DNA end-binding complex. To confirm that the 68 kDa Ku protein was not a consequence of nuclear protein contamination of mitochondrial preparations, highly purified intact nuclei and mitochondria were treated with proteinase K which traverses the pores of intact nuclei but gains limited access into intact mitochondria. Ku80 in purified intact nuclei was sensitive to treatment with this protease, while the 68 kDa Ku protein characteristic of purified intact mitochondria was resistant. Further, immunocytochemical analysis revealed the co-localization of the N-terminal specific Ku80 monoclonal antibody with a mitochondrial-targeted green fluorescence protein. Mitochondrial localization of the C-terminal Ku80 monoclonal antibody was not observed. These data are consistent with the hypothesis that a C-terminally truncated form of Ku80 is localized in mammalian mitochondria where it functions in a DNA end-binding activity.

Original languageEnglish (US)
Pages (from-to)3793-3800
Number of pages8
JournalNucleic acids research
Volume28
Issue number19
DOIs
StatePublished - Oct 1 2000

Fingerprint

Dive into the research topics of 'An alternate form of Ku80 is required for DNA end-binding activity in mammalian mitochondria'. Together they form a unique fingerprint.

Cite this