Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques

Berkman Albayrak, İsmail Hakkı Korkmaz, Alvin G. Wee, Cortino Sukotjo, Funda Bayındır

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We aimed to evaluate the trueness of digital and conventional impression techniques based on different angles and distances between implants and the deviation caused by the angle and distance parameters varying between implants. Eight implants were placed in a polyurethane edentulous mandibular model at different angles and distances. After obtaining a 3-dimensional (3D) reference model by using an optical scanner, the model was scanned with three intraoral scanners: Cerec Omnicam (DO), Trios 3 (DT), and Carestream 3500 (DC). Then, the master casts obtained from the conventional impressions (C) were also digitized, and all impression data were imported into reverse engineering software to be compared with the 3D reference model. Distance and angle measurements between adjacent implants were performed, and the data were analyzed with ANOVA– Tukey and Kruskal Wallis tests. The significance level was accepted as p < 0.05. While DT and C groups gave the best results for high interimplant distances, the trueness of intraoral scanners was found to be superior to the conventional method between closer implants. At higher angulations, the angular trueness of C group was found to be significantly lower. At short distances, digital groups showed superiority, and the trueness of conventional impression decreased with higher angulations.

Original languageEnglish (US)
Article number293
JournalMachines
Volume10
Issue number5
DOIs
StatePublished - May 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • angle
  • digital implant impression
  • interimplant distance
  • intraoral scanner
  • trueness

Fingerprint

Dive into the research topics of 'Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques'. Together they form a unique fingerprint.

Cite this