Astrocyte regulation of blood flow in the brain

Brian A. Macvicar, Eric A. Newman

Research output: Contribution to journalArticlepeer-review

229 Scopus citations

Abstract

Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca2+ increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels, whereas 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K from astrocyte endfeet may also contribute to vasodilation. Oxygen modulates astrocyte regulation of blood flow. Under normoxic conditions, astrocytic Ca2+ signaling results in vasodilation, whereas under hyperoxic conditions, vasoconstriction is favored. Astrocytes also contribute to the generation of vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone. Under pathological conditions, including Alzheimer’s disease and diabetic reti-nopathy, disruption of normal astrocyte physiology can compromise the regulation of blood flow.

Original languageEnglish (US)
Pages (from-to)1-15
Number of pages15
JournalCold Spring Harbor Perspectives in Biology
Volume7
Issue number5
DOIs
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

Fingerprint

Dive into the research topics of 'Astrocyte regulation of blood flow in the brain'. Together they form a unique fingerprint.

Cite this