Coexistence and Interaction of Spinons and Magnons in an Antiferromagnet with Alternating Antiferromagnetic and Ferromagnetic Quantum Spin Chains

H. Zhang, Z. Zhao, D. Gautreau, M. Raczkowski, A. Saha, V. O. Garlea, H. Cao, T. Hong, H. O. Jeschke, Subhendra D. Mahanti, T. Birol, F. F. Assaad, X. Ke

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations, and random phase approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu2(OH)3Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic spin-1/2 chains with weak interchain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles: magnons and spinons.

Original languageEnglish (US)
Article number037204
JournalPhysical review letters
Volume125
Issue number3
DOIs
StatePublished - Jul 17 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 American Physical Society.

Fingerprint

Dive into the research topics of 'Coexistence and Interaction of Spinons and Magnons in an Antiferromagnet with Alternating Antiferromagnetic and Ferromagnetic Quantum Spin Chains'. Together they form a unique fingerprint.

Cite this