Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus

Jonathan J. Waataja, Anders J. Asp, Charles J. Billington

Research output: Contribution to journalArticlepeer-review

Abstract

Neurological disorders and type 2 diabetes mellitus (T2DM) are deeply intertwined. For example, autonomic neuropathy contributes to the development of T2DM and continued unmanaged T2DM causes further progression of nerve damage. Increasing glycemic control has been shown to prevent the onset and progression of diabetic autonomic neuropathies. Neuromodulation consisting of combined stimulation of celiac vagal fibers innervating the pancreas with concurrent electrical blockade of neuronal hepatic vagal fibers innervating the liver has been shown to increase glycemic control in animal models of T2DM. The present study demonstrated that the neuromodulation reversed glucose intolerance in alloxan-treated swine in both pre- and overt stages of T2DM. This was demonstrated by improved performance on oral glucose tolerance tests (OGTTs), as assessed by area under the curve (AUC). In prediabetic swine (fasting plasma glucose (FPG) range: 101–119 mg/dL) the median AUC decreased from 31.9 AUs (IQR = 28.6, 35.5) to 15.9 AUs (IQR = 15.1, 18.3) p = 0.004. In diabetic swine (FPG range: 133–207 mg/dL) the median AUC decreased from 54.2 AUs (IQR = 41.5, 56.6) to 16.0 AUs (IQR = 15.4, 21.5) p = 0.003. This neuromodulation technique may offer a new treatment for T2DM and reverse glycemic dysregulation at multiple states of T2DM involved in diabetic neuropathy including at its development and during progression.

Original languageEnglish (US)
Article number2452
JournalBiomedicines
Volume11
Issue number9
DOIs
StatePublished - Sep 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • bioelectronics
  • glycemic dysregulation
  • heart rate variability and vagal tone
  • neurological disorders
  • neuromodulation
  • neuropathy
  • type 2 diabetes
  • vagus nerve
  • vagus nerve stimulation

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Combining Celiac and Hepatic Vagus Nerve Neuromodulation Reverses Glucose Intolerance and Improves Glycemic Control in Pre- and Overt-Type 2 Diabetes Mellitus'. Together they form a unique fingerprint.

Cite this