Comparative study of effects of group-velocity dispersion on midinfrared quantum-cascade lasers with Fabry-Perot and ring cavities

Jing Bai, Hanquan Wang, Jinchuan Zhang, Fengqi Liu

Research output: Contribution to journalArticlepeer-review

Abstract

We focused on the effects of group-velocity dispersion (GVD) on the coherent pulse progression in midinfrared quantum-cascade lasers (QCLs). We carried out the study on Fabry-Perot (FP) cavities. Comparison of GVD effects on the two kinds of typical QCL cavities, i.e., FP and ring cavities, brings insight into the interaction between the GVD and spatial hole burning (SHB) effect, which is only supported by FP cavities but not ring cavities. The theoretical model is built based on the Maxwell-Bloch formulism accounting for two-way propagations of electric field and polarization as well as the couplings among the electric field, polarization, and population inversion. The pulse evolution in time-spatial domains is simulated by the finite-difference method with prior nondimensionalization, which is necessary for a convergent solution. Results predict that the SHB could broaden the QCL gain bandwidth and induce additional side modes closely around the central lasing mode with an intensity more pronounced than that of GVD associated side modes. Moreover, owing to the SHB, the lasing instability caused by GVD is weaker in an FP cavity than a ring cavity.

Original languageEnglish (US)
Article number026003
JournalJournal of Nanophotonics
Volume12
Issue number2
DOIs
StatePublished - Apr 1 2018

Bibliographical note

Funding Information:
National Science Foundation (NSF) Grant No. ECCS-1232273.

Funding Information:
Jing Bai’s research was partially supported by the National Science Foundation (NSF) Grant No. ECCS-1232273. Hanquan Wang’s research was partially supported by Natural Science Foundation of China under Grant Nos. 11261065 and 91430103.

Publisher Copyright:
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE).

Keywords

  • dispersive media
  • midinfrared quantum-cascade lasers
  • spatial hole burning

Fingerprint

Dive into the research topics of 'Comparative study of effects of group-velocity dispersion on midinfrared quantum-cascade lasers with Fabry-Perot and ring cavities'. Together they form a unique fingerprint.

Cite this