Comparison of mouse models of microbial experience reveals differences in microbial diversity and response to vaccination

Autumn E. Sanders, Henriette Arnesen, Frances K. Shepherd, Dira S. Putri, Jessica K. Fiege, Mark J. Pierson, Shanley N. Roach, Harald Carlsen, David Masopust, Preben Boysen, Ryan A. Langlois

Research output: Contribution to journalArticlepeer-review

Abstract

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.

Original languageEnglish (US)
JournalmSphere
Volume9
Issue number2
DOIs
StatePublished - Feb 2024

Bibliographical note

Publisher Copyright:
© 2024 Sanders et al.

Keywords

  • mouse models
  • natural mouse viruses
  • preclinical models
  • vaccines

Fingerprint

Dive into the research topics of 'Comparison of mouse models of microbial experience reveals differences in microbial diversity and response to vaccination'. Together they form a unique fingerprint.

Cite this