Conjugate Heat Transfer Analysis Of Film Cooling With A Ribroughened Delivery Passage

Rui Zhu, Gongnan Xie, Terrence Simon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Internal cooling and film cooling are two main cooling methods in modern gas turbines. They work together to protect the high-temperature components. This paper presents the results of a computational study on cooling performance for a flat plate with both film cooling and internal cooling using a conjugate heat transfer analysis. Three internal delivery channel geometries, smooth channel, channel roughened by square ribs, and channel roughened by crescent ribs, are studied with two film cooling geometries, cylindrical hole and sister holes. The respective conjugate cooling performances are compared. To help understand the interaction between film cooling and internal cooling, detailed flow and heat transfer characteristics are presented and discussed. Results show how overall cooling effectiveness is controlled by conjugate heat transfer of the two cooling schemes. Both film cooling effectiveness and internal cooling performance are influenced by the delivery channel geometry near the hole inlets. The sink flow effects of film cooling will enhance the heat transfer coefficient near the film cooling hole inlet, enhancing with stronger blowing ratio. At the same time, film cooling performance is affected by the internal channel as the flow inside the film cooling hole is influenced by the ribs near the hole inlets.

Original languageEnglish (US)
Title of host publicationHeat Transfer and Thermal Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885673
DOIs
StatePublished - 2021
EventASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 - Virtual, Online
Duration: Nov 1 2021Nov 5 2021

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume11

Conference

ConferenceASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
CityVirtual, Online
Period11/1/2111/5/21

Bibliographical note

Publisher Copyright:
© 2021 by ASME.

Keywords

  • Conjugate heat transfer
  • Film cooling
  • Internal cooling
  • Rib-roughened channel
  • Sister holes

Fingerprint

Dive into the research topics of 'Conjugate Heat Transfer Analysis Of Film Cooling With A Ribroughened Delivery Passage'. Together they form a unique fingerprint.

Cite this