Correlation between phase compatibility and efficient energy conversion in Zr-doped Barium Titanate

Maike Wegner, Hanlin Gu, Richard D. James, Eckhard Quandt

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Recent demonstrations of both heat-to-electricity energy conversion devices and electrocaloric devices based on first-order ferroelectric phase transformations identify the lowering of hysteresis and cyclic reversibility of the transformation as enabling criteria for the advancement of this technology. These demonstrations, and recent studies of the hysteresis of phase transformations in oxides, show that satisfying conditions of supercompatibility can be useful for lowering hysteresis, but with limitations for systems with only a few variants of the lower symmetry phase. In particular, it is widely accepted that in a classic cubic-to-tetragonal phase transformation, with only three tetragonal variants having only six twin systems, tuning for improved crystallographic compatibility will be of limited value. This work shows that, on the contrary, the tuning of lattice parameters in Ba(Ti1-xZrx)O3 for improved crystallographic compatibility, even at low doping levels of Zr (x ≤ 0.027), give significant improvement of transformation and ferroelectric energy conversion properties. Specifically, the transformation hysteresis is lowered by 25%, and the maximum value of the polarization/temperature ratio dP/dT at the phase transformation is increased by 10%.

Original languageEnglish (US)
Article number3496
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

Bibliographical note

Funding Information:
E.Q. and M.W acknowledge funding by the DFG through a Reinhart Koselleck Project. M.W. also thanks Dieter Garbe-Schönberg and Ulrike Westernströer (ICP-MS-Lab, CAU Kiel) for support with the LA-ISP-MS measurements and discussions. R.D.J was supported by a Vannevar Bush Faculty Fellowship and H.G. acknowledges support from the Institute on the Environment (RDF fund).

Publisher Copyright:
© 2020, The Author(s).

Fingerprint

Dive into the research topics of 'Correlation between phase compatibility and efficient energy conversion in Zr-doped Barium Titanate'. Together they form a unique fingerprint.

Cite this