Decoding Human Cognitive Control Using Functional Connectivity of Local Field Potentials

Sandeep Avvaru, Nicole R. Provenza, Alik S. Widge, Keshab K. Parhi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Many patients with mental illnesses characterized by impaired cognitive control have no relief from gold-standard clinical treatments resulting in a pressing need for new alternatives. This paper develops a neural decoder to detect task engagement in ten human subjects during a conflict-based behavioral task known as the multi-source interference task (MSIT). Task engagement is of particular interest here because closed-loop brain stimulation during those states can augment decision-making. The functional connectivity patterns of the electrodes are extracted. A principal component analysis of these patterns is carried out and the ranked principal components are used as inputs to train subject-specific linear support vector machine classifiers. In this paper, we show that task engagement can be differentiated from background brain activity with a median accuracy of 89.7%. This was accomplished by constructing distributed functional networks from local field potentials recording during the task performance. A further challenge is that goal-directed efforts take place over higher temporal resolution. Task engagement must thus be detected at a similar rate for proactive intervention. We show that our algorithms can detect task engagement from neural recordings in less than 2 seconds; this can be further improved using an application-specific device.

Original languageEnglish (US)
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages451-454
Number of pages4
ISBN (Electronic)9781728111797
DOIs
StatePublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: Nov 1 2021Nov 5 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period11/1/2111/5/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

Fingerprint

Dive into the research topics of 'Decoding Human Cognitive Control Using Functional Connectivity of Local Field Potentials'. Together they form a unique fingerprint.

Cite this