Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer

Alexis K. Elfstrum, Aditi S. Bapat, Kathryn L. Schwertfeger

Research output: Contribution to journalReview articlepeer-review

Abstract

Introduction: Macrophages are innate immune cells that are associated with extensive phenotypic and functional plasticity and contribute to normal development, tissue homeostasis, and diseases such as cancer. In this review, we discuss the heterogeneity of tissue resident macrophages in the normal mammary gland and tumor-associated macrophages in breast cancer. Tissue resident macrophages are required for mammary gland development, where they have been implicated in promoting extracellular matrix remodeling, apoptotic clearance, and cellular crosstalk. In the context of cancer, tumor-associated macrophages are key drivers of growth and metastasis via their ability to promote matrix remodeling, angiogenesis, lymphangiogenesis, and immunosuppression. Method: We identified and summarized studies in Pubmed that describe the phenotypic and functional heterogeneity of macrophages and the implications of targeting individual subsets, specifically in the context of mammary gland development and breast cancer. We also identified and summarized recent studies using single-cell RNA sequencing to identify and describe macrophage subsets in human breast cancer samples. Results: Advances in single-cell RNA sequencing technologies have yielded nuances in macrophage heterogeneity, with numerous macrophage subsets identified in both the normal mammary gland and breast cancer tissue. Macrophage subsets contribute to mammary gland development and breast cancer progression in differing ways, and emerging studies highlight a role for spatial localization in modulating their phenotype and function. Conclusion: Understanding macrophage heterogeneity and the unique functions of each subset in both normal mammary gland development and breast cancer progression may lead to more promising targets for the treatment of breast cancer.

Original languageEnglish (US)
Article numbere7053
JournalCancer medicine
Volume13
Issue number3
DOIs
StatePublished - Feb 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Keywords

  • breast cancer
  • LYVE-1
  • macrophage
  • mammary gland
  • TREM2

PubMed: MeSH publication types

  • Journal Article
  • Review

Fingerprint

Dive into the research topics of 'Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer'. Together they form a unique fingerprint.

Cite this