Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality

Yun Soo Hong, Stephanie L. Battle, Wen Shi, Daniela Puiu, Vamsee Pillalamarri, Jiaqi Xie, Nathan Pankratz, Nicole J. Lake, Monkol Lek, Jerome I. Rotter, Stephen S. Rich, Charles Kooperberg, Alex P. Reiner, Paul L. Auer, Nancy Heard-Costa, Chunyu Liu, Meng Lai, Joanne M. Murabito, Daniel Levy, Megan L. GroveAlvaro Alonso, Richard Gibbs, Shannon Dugan-Perez, Lukasz P. Gondek, Eliseo Guallar, Dan E. Arking

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia.

Original languageEnglish (US)
Article number6113
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality'. Together they form a unique fingerprint.

Cite this