Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension

Xinran Lu, David K. Wood, John M. Higgins

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient complications, response to transfusion, and the optimization of experimental therapies in development.

Original languageEnglish (US)
Pages (from-to)2751-2758
Number of pages8
JournalBiophysical journal
Volume110
Issue number12
DOIs
StatePublished - Jun 21 2016

Bibliographical note

Funding Information:
This work was supported by National Heart, Lung, and Blood Institute (NHLBI) grant R21HL130818. J.M.H. was also supported by NHLBI grant HL114476, and a National Institutes of Health (NIH) Director’s New Innovator Award (DP2DK098087). D.K.W. was also supported by the American Heart Association under grant 13SDG6450000.

Publisher Copyright:
© 2016 Biophysical Society.

Fingerprint

Dive into the research topics of 'Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension'. Together they form a unique fingerprint.

Cite this