Electron spin polarization in an Al(III) porphyrin complex with an axially bound nitroxide radical

Prashanth K. Poddutoori, Yuri E. Kandrashkin, Paul Karr, Art Van Der Est

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The generation and transfer of electron spin polarization and coherence plays an important role in quantum information technologies and spintronics. In this context, the excited state spin dynamics of molecular systems in which a stable free radical is attached to a chromophore are of particular interest. In such complexes, the coupling between the electron spin on the free radical with those on the chromophore generates excited states referred to as sing-doublet, trip-doublet, and trip-quartet. Here, we study the light-induced electron spin polarization in an aluminum(iii) porphyrin (AlPor) complex in which the nitroxide (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) is covalently bound to the Al center via an ester linkage. In addition to the covalent bond to the TEMPO moiety, the Al center in AlPor also acts as a Lewis acid and can coordinate Lewis bases such as pyridine. Without pyridine bound, the spin polarized transient electron paramagnetic resonance spectrum of the complex at 80 K is unusual and displays a strong absorptive pattern with a Lorentzian lineshape. Coordination of pyridine to AlPor-TEMPO results in a dramatic change in the spin polarization pattern and a spectrum typical of the quartet state with broad wings from the ms = ±1/2 ↔ ±3/2 transitions with emissive/absorptive polarization and a narrow absorptive peak from the ms = ±1/2 ↔ ±1/2 transitions. At later times, the pattern evolves to a purely absorptive spectrum similar to that observed without pyridine. These changes are discussed in terms of a model in which back and forth transitions between the nearly degenerate lowest trip-doublet and trip-quartet states occur. It is argued that these transitions lead to the observed net polarization in AlPor-TEMPO and are fast enough that the outer lines are broadened. Density functional theory computations and the UV/Vis spectra suggest that the exchange interaction between TEMPO and the triplet state of AlPor increases when pyridine is bound, and the near degeneracy of the lowest excited states is lifted. It is argued that this slows the back and forth transitions which results in the strong change in the polarization pattern.

Original languageEnglish (US)
Article number204303
JournalJournal of Chemical Physics
Volume151
Issue number20
DOIs
StatePublished - Nov 28 2019

Bibliographical note

Funding Information:
Support from NSERC in the form of a Discovery Grant to AvdE and from the University of Minnesota Duluth to PPK is gratefully acknowledged. This work was completed utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative.

Publisher Copyright:
© 2019 Author(s).

Fingerprint

Dive into the research topics of 'Electron spin polarization in an Al(III) porphyrin complex with an axially bound nitroxide radical'. Together they form a unique fingerprint.

Cite this