Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors

Matthew J. Panzer, C. Daniel Frisbie

Research output: Contribution to journalArticlepeer-review

160 Scopus citations

Abstract

Currently there is great interest in using organic semiconductors to develop novel flexible electronic applications. An emerging strategy in organic semiconductor materials research involves development of composite or layered materials in which electronic and ionic conductivity is combined to create enhanced functionality in devices. For example, we and other groups have employed ionic motion to modulate electronic transport in organic field-effect transistors using solid electrolytes. Not only do these transistors operate at low voltages as a result of greatly enhanced capacitive coupling, but they also display intriguing transport phenomena such as negative differential transconductance. Here, we discuss differences in operation between traditional (e.g., SiO2) and electrolyte-based dielectrics, suggest further improvements to currently used electrolyte materials, and propose several possibilities for exploiting electrolytes in future applications with both organic and inorganic semiconductors.

Original languageEnglish (US)
Pages (from-to)3177-3180
Number of pages4
JournalAdvanced Materials
Volume20
Issue number16
DOIs
StatePublished - Aug 18 2008

Fingerprint

Dive into the research topics of 'Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors'. Together they form a unique fingerprint.

Cite this