Fast, Accurate and Memory-Efficient Partial Permutation Synchronization

Shaohan Li, Yunpeng Shi, Gilad Lerman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Previous partial permutation synchronization (PPS) algorithms, which are commonly used for multi-object matching, often involve computation-intensive and memory-demanding matrix operations. These operations become intractable for large scale structure-from-motion datasets. For pure permutation synchronization, the recent Cycle-Edge Message Passing (CEMP) framework suggests a memory-efficient and fast solution. Here we overcome the restriction of CEMP to compact groups and propose an improved algorithm, CEMP-Partial, for estimating the corruption levels of the observed partial permutations. It allows us to subsequently implement a nonconvex weighted projected power method without the need of spectral initialization. The resulting new PPS algorithm, MatchFAME (Fast, Accurate and Memory-Efficient Matching), only involves sparse matrix operations, and thus enjoys lower time and space complexities in comparison to previous PPS algorithms. We prove that under adversarial corruption, though without additive noise and with certain assumptions, CEMP-Partial is able to exactly classify corrupted and clean partial permutations. We demonstrate the state-of-the-art accuracy, speed and memory efficiency of our method on both synthetic and real datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages15714-15722
Number of pages9
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Bibliographical note

Funding Information:
This work was supported by NSF awards 1821266, 2124913.

Publisher Copyright:
© 2022 IEEE.

Keywords

  • 3D from multi-view and sensors

Fingerprint

Dive into the research topics of 'Fast, Accurate and Memory-Efficient Partial Permutation Synchronization'. Together they form a unique fingerprint.

Cite this