Fixture-Aware DDQN for Generalized Environment-Enabled Grasping

Eddie Sasagawa, Changhyun Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper expands on the problem of grasping an object that can only be grasped by a single parallel gripper when a fixture (e.g., wall, heavy object) is harnessed. Preceding work that tackle this problem are limited in that the employed networks implicitly learn specific targets and fixtures to leverage. However, the notion of a usable fixture can vary in different environments, at times without any outwardly noticeable differences. In this paper, we propose a method to relax this limitation and further handle environments where the fixture location is unknown. The problem is formulated as visual affordance learning in a partially observable setting. We present a self-supervised reinforcement learning algorithm, Fixture-Aware Double Deep Q-Network (FA-DDQN), that processes the scene observation to 1) identify the target object based on a reference image, 2) distinguish possible fixtures based on interaction with the environment, and finally 3) fuse the information to generate a visual affordance map to guide the robot to successful Slide-to-Wall grasps. We demonstrate our proposed solution in simulation and in real robot experiments to show that in addition to achieving higher success than baselines, it also performs zero-shot generalization to novel scenes with unseen object configurations.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3151-3158
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: Oct 23 2022Oct 27 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period10/23/2210/27/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Fingerprint

Dive into the research topics of 'Fixture-Aware DDQN for Generalized Environment-Enabled Grasping'. Together they form a unique fingerprint.

Cite this