Fizeau drag in graphene plasmonics

Y. Dong, L. Xiong, I. Y. Phinney, Z. Sun, R. Jing, A. S. McLeod, S. Zhang, S. Liu, F. L. Ruta, H. Gao, Z. Dong, R. Pan, J. H. Edgar, P. Jarillo-Herrero, L. S. Levitov, A. J. Millis, M. M. Fogler, D. A. Bandurin, D. N. Basov

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Dragging of light by moving media was predicted by Fresnel1 and verified by Fizeau’s celebrated experiments2 with flowing water. This momentous discovery is among the experimental cornerstones of Einstein’s special relativity theory and is well understood3,4 in the context of relativistic kinematics. By contrast, experiments on dragging photons by an electron flow in solids are riddled with inconsistencies and have so far eluded agreement with the theory5–7. Here we report on the electron flow dragging surface plasmon polaritons8,9 (SPPs): hybrid quasiparticles of infrared photons and electrons in graphene. The drag is visualized directly through infrared nano-imaging of propagating plasmonic waves in the presence of a high-density current. The polaritons in graphene shorten their wavelength when propagating against the drifting carriers. Unlike the Fizeau effect for light, the SPP drag by electrical currents defies explanation by simple kinematics and is linked to the nonlinear electrodynamics of Dirac electrons in graphene. The observed plasmonic Fizeau drag enables breaking of time-reversal symmetry and reciprocity10 at infrared frequencies without resorting to magnetic fields11,12 or chiral optical pumping13,14. The Fizeau drag also provides a tool with which to study interactions and nonequilibrium effects in electron liquids.

Original languageEnglish (US)
Pages (from-to)513-516
Number of pages4
JournalNature
Volume594
Issue number7864
DOIs
StatePublished - Jun 24 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Fizeau drag in graphene plasmonics'. Together they form a unique fingerprint.

Cite this