Genotype x environment interaction for grazing versus confinement. I. Production traits

J. F. Kearney, M. M. Schutz, P. J. Boettcher, K. A. Weigel

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

The objective of this study was to investigate the possible existence of a genotype x environment interaction (GxE) for production traits of US Holsteins in grazing versus confinement herds. Grazing herds were defined as those that utilized grazing for at least 6 mo and were enrolled in dairy herd improvement (DHI). Control herds were confinement DHI herds of comparable size in similar regions. The performance of daughters in grazing herds and control herds was examined using linear regression of mature equivalent milk, fat, and protein yield on the November 2000 USDA-DHI predicted transmitting abilities (PTA) of their sires for those traits. Heritabilities and genetic correlations were estimated using restricted maximum likelihood in a bivariate animal model that considered the same trait in different environments as different traits. Product-moment and rank correlations were calculated between sires' estimated breeding values, estimated separately in both environments. For grazing herds, the coefficient of regression of milk, fat and protein on PTA were 0.78, 0.76, and 0.78, respectively. Corresponding coefficients in the control herds were 0.99, 0.96, and 0.98. Estimates of heritability for the traits ranged from 0.2 to 0.25, and differences between grazing and control environments were small. Estimates of the genetic correlations for the traits in both environments were 0.89, 0.88, and 0.91 for milk, fat, and protein, respectively. Within-quartile analyses revealed a lower correlation for milk and protein between the upper and lower grazing quartiles, while the same quartiles for the control herds did not differ from unity. Rank correlation coefficients between sire estimated breeding values from the 2 environments were 0.59, 0.63, and 0.66 for milk, fat, and protein, respectively. The mean rank change for the top 100 sires between the two environments was 27. The regression coefficients indicate that expected daughter differences may be overstated by current sire PTA in grazing herds. Genetic correlations less than unity suggests that there is, at least, some reranking among sires in both environments, while the rank correlations indicate the possibility of sire reranking when evaluations were performed within management system. However, differences are not so large as to justify separate genetic evaluations for each system.

Original languageEnglish (US)
Pages (from-to)501-509
Number of pages9
JournalJournal of Dairy Science
Volume87
Issue number2
DOIs
StatePublished - Feb 2004
Externally publishedYes

Bibliographical note

Funding Information:
This study was funded in part by the USDA's Sustainable Agriculture Research and Education (SARE) program, Lincoln, NE and the National Association of Animal Breeders , Columbia, MO. The authors wish to thank the numerous individuals who contributed data to the study, especially John Clay and Crystal Vierhout of DRMS, Raleigh, NC, for supplying the records and appreciate the helpful comments of two anonymous reviewers.

Keywords

  • Genotype x environment interaction
  • Grazing
  • Production

Fingerprint

Dive into the research topics of 'Genotype x environment interaction for grazing versus confinement. I. Production traits'. Together they form a unique fingerprint.

Cite this