Impact of microcoil shape and the efficacy of soft magnetic material cores in focal micromagnetic neurostimulation

Renata Saha, Kai Wu, Jian Ping Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Micromagnetic neurostimulation (μMS), despite being in its infancy, has shown promising results in spatially selective activation of neurons. The devices are micrometer-sized coils or microcoils (μcoils) which work on the principle of Faraday's Law of electromagnetic induction. Upon applying a time-varying current through these μcoils they generate a time-varying magnetic field which in turn induces an electric field that activates the neurons. These μcoils are spared from biofouling nuances as this induced electric field is not in direct electrochemical contact with the tissues. However, these μcoils have a high power of operation which lead to undesirable thermal effects on neurons. In this work, we have studied the efficacy of soft magnetic material (SMM) cores on these μcoils to solve two existing challenges for μMS. First, to minimize the power consumption for these μcoils. Second, to achieve even more precise and focal activation of the neural tissues. We have studied 3 shapes of μcoils with comparable sizes in terms of spatial contour plots of magnetic field and induced electric field. Furthermore, the efficacy of 2 shapes of SMM cores, cone and rod, of varying sizes have been studied to obtain a spatially focal magnetic field and increased magnitude of induced electric field.

Original languageEnglish (US)
Title of host publication11th International IEEE/EMBS Conference on Neural Engineering, NER 2023 - Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781665462921
DOIs
StatePublished - 2023
Event11th International IEEE/EMBS Conference on Neural Engineering, NER 2023 - Baltimore, United States
Duration: Apr 25 2023Apr 27 2023

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
Volume2023-April
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Conference

Conference11th International IEEE/EMBS Conference on Neural Engineering, NER 2023
Country/TerritoryUnited States
CityBaltimore
Period4/25/234/27/23

Bibliographical note

Funding Information:
This study was financially supported by the Minnesota Partnership for Biotechnology and Medical Genomics under award number ML2020 Chap 64. Art I, Sec 1. 4 and Robert F. Hartmann Endowed Chair. Research reported in this publication was supported by the University of Minnesota’s MnDRIVE (Minnesota’s Discovery, Research and Innovation Economy) initiative.

Publisher Copyright:
© 2023 IEEE.

Fingerprint

Dive into the research topics of 'Impact of microcoil shape and the efficacy of soft magnetic material cores in focal micromagnetic neurostimulation'. Together they form a unique fingerprint.

Cite this