Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo

Kimberly M Carlson, Lisa M. Curran, Alexandra G. Ponette-González, Dessy Ratnasari, Ruspita, Neli Lisnawati, Yadi Purwanto, Kate A. Brauman, Peter A. Raymond

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Oil palm plantation expansion into tropical forests may alter physical and biogeochemical inputs to streams, thereby changing hydrological function. In West Kalimantan, Indonesia, we assessed streams draining watersheds characterized by five land uses: intact forest, logged forest, mixed agroforest, and young (<3 years) and mature (>10 years) oil palm plantation. We quantified suspended sediments, stream temperature, and metabolism using high-frequency submersible sonde measurements during month-long intervals between 2009 and 2012. Streams draining oil palm plantations had markedly higher sediment concentrations and yields, and stream temperatures, compared to other streams. Mean sediment concentrations were fourfold to 550-fold greater in young oil palm than in all other streams and remained elevated even under base flow conditions. After controlling for precipitation, the mature oil palm stream exhibited significantly greater sediment yield than other streams. Young and mature oil palm streams were 3.9°C and 3.0°C warmer than the intact forest stream (25°C). Across all streams, base flow periods were significantly warmer than times of stormflow, and these differences were especially large in oil palm catchments. Ecosystem respiration rates were also influenced by low precipitation. During an El Niño-Southern Oscillation-associated drought, the mature oil palm stream consumed a maximum 21 g O2 m-2 d-1 in ecosystem respiration, in contrast with 2.8-±-3.1 g O2 m-2 d-1 during nondrought sampling. Given that 23% of Kalimantan's land area is occupied by watersheds similar to those studied here, our findings inform potential hydrologic outcomes of regional periodic drought coupled with continued oil palm plantation expansion.

Original languageEnglish (US)
Pages (from-to)1110-1128
Number of pages19
JournalJournal of Geophysical Research: Biogeosciences
Volume119
Issue number6
DOIs
StatePublished - Jun 2014

Keywords

  • agroforest
  • hydrology
  • Kalimantan
  • oil palm
  • sonde
  • tropical

Fingerprint

Dive into the research topics of 'Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo'. Together they form a unique fingerprint.

Cite this