Intensity discrimination and increment detection in cochlear-implant users

Magdalena Wojtczak, Gail S. Donaldson, Neal F. Viemeister

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Intensity difference limens (DLs) were measured in users of the Nucleus 22 and Clarion v1.2 cochlear implants and in normal-hearing listeners to better understand mechanisms of intensity discrimination in electric and acoustic hearing and to evaluate the possible role of neural adaptation. Intensity DLs were measured for three modes of presentation: gated (intensity increments gated synchronously with the pedestal), fringe (intensity increments delayed 250 or 650 ms relative to the onset of the pedestal), and continuous (intensity increments occur in the presence of a pedestal that is played throughout the experimental run). Stimuli for cochlear-implant listeners were trains of biphasic pulses; stimuli for normal-hearing listeners were a 1-kHz tone and a wideband noise. Clarion cochlear-implant listeners showed level-dependent effects of presentation mode. At low pedestal levels, gated thresholds were generally similar to thresholds obtained in the fringe and continuous conditions. At higher pedestal levels, however, the fringe and continuous conditions produced smaller intensity DLs than the gated condition, similar to the gated-continuous difference in intensity DLs observed in acoustic hearing. Nucleus cochlear-implant listeners did not show consistent threshold differences for the gated and fringe conditions, and were not tested in the continuous condition. It is not clear why a difference between gated and fringe thresholds occurred for the Clarion but not the Nucleus subjects. Normal-hearing listeners showed improved thresholds for the continuous condition relative to the gated condition, but the effect was larger for the 1-kHz tonal carrier than for the noise carrier. Findings suggest that adaptation occurring central to the inner hair cell synapse mediates the gated-continuous difference observed in Clarion cochlear-implant listeners and may also contribute to the gated-continuous difference in acoustic hearing.

Original languageEnglish (US)
Pages (from-to)396-407
Number of pages12
JournalJournal of the Acoustical Society of America
Volume114
Issue number1
DOIs
StatePublished - Jul 1 2003

Fingerprint

Dive into the research topics of 'Intensity discrimination and increment detection in cochlear-implant users'. Together they form a unique fingerprint.

Cite this