Learning Object Relations with Graph Neural Networks for Target-Driven Grasping in Dense Clutter

Xibai Lou, Yang Yang, Changhyun Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Robots in the real world frequently come across identical objects in dense clutter. When evaluating grasp poses in these scenarios, a target-driven grasping system requires knowledge of spatial relations between scene objects (e.g., proximity, adjacency, and occlusions). To efficiently complete this task, we propose a target-driven grasping system that simultaneously considers object relations and predicts 6-DoF grasp poses. A densely cluttered scene is first formulated as a grasp graph with nodes representing object geometries in the grasp coordinate frame and edges indicating spatial relations between the objects. We design a Grasp Graph Neural Network (G2N2) that evaluates the grasp graph and finds the most feasible 6-DoF grasp pose for a target object. Additionally, we develop a shape completion-assisted grasp pose sampling method that improves sample quality and consequently grasping efficiency. We compare our method against several baselines in both simulated and real settings. In real-world experiments with novel objects, our approach achieves a 77.78% grasping accuracy in densely cluttered scenarios, surpassing the best-performing baseline by more than 15%. Supplementary material is available at https://sites.google.com/umn.edu/graph-grasping.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages742-748
Number of pages7
ISBN (Electronic)9781728196817
DOIs
StatePublished - 2022
Externally publishedYes
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: May 23 2022May 27 2022

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period5/23/225/27/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • Deep Learning in Grasping and Manipulation
  • Grasping
  • Perception for Grasping and Manipulation

Fingerprint

Dive into the research topics of 'Learning Object Relations with Graph Neural Networks for Target-Driven Grasping in Dense Clutter'. Together they form a unique fingerprint.

Cite this