Mechanism for calcium ion sensing by the C2A domain of synaptotagmin i

Jacob W. Gauer, Ryan Sisk, Jesse R. Murphy, Heathere Jacobson, R. Bryan Sutton, Gregory D. Gillispie, Anne Hinderliter

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The C2A domain is one of two calcium ion (Ca2+)- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca 2+ sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca2+ and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globally fitting differential scanning calorimetry and fluorescence lifetime spectroscopy denaturation data, and found that C2A is weakly stable. Additionally, using partition functions in a fluorescence resonance energy transfer approach, we found that the Ca2+- and membrane-binding sites of C2A exhibit weak cooperative linkage. Lastly, a dye-release assay revealed that the Ca2+- and membrane-bound conformer subset of C2A promote membrane disruption. We discuss how these phenomena may lead to both cooperative and functional responses of Syt I.

Original languageEnglish (US)
Pages (from-to)238-246
Number of pages9
JournalBiophysical journal
Volume103
Issue number2
DOIs
StatePublished - Jul 18 2012

Bibliographical note

Funding Information:
A.H. acknowledges support from a National Science Foundation CAREER Award (MCB-0845676). This work received partial support from the Montana Board of Research and Commercialization Technology (grant 10-75 to G.D.G.).

Fingerprint

Dive into the research topics of 'Mechanism for calcium ion sensing by the C2A domain of synaptotagmin i'. Together they form a unique fingerprint.

Cite this