Mini-Batch Learning Strategies for modeling long term temporal dependencies: A study in environmental applications

Shaoming Xu, Ankush Khandelwal, Xiang Li, Xiaowei Jia, Licheng Liu, Jared Willard, Rahul Ghosh, Kelly Cutler, Michael Steinbach, Christopher Duffy, John Nieber, Vipin Kumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In many environmental applications, recurrent neural networks (RNNs) are often used to model physical variables with long temporal dependencies. However, due to mini-batch training, temporal relationships between training segments within the batch (intra-batch) as well as between batches (inter-batch) are not considered, which can lead to limited performance. Stateful RNNs aim to address this issue by passing hidden states between batches. Since Stateful RNNs ignore intra-batch temporal dependency, there exists a trade-off between training stability and capturing temporal dependency. In this paper, we provide a quantitative comparison of different Stateful RNN modeling strategies, and propose two strategies to enforce both intra- and inter-batch temporal dependency. First, we extend Stateful RNNs by defining a batch as a temporally ordered set of training segments, which enables intra-batch sharing of temporal information. While this approach significantly improves the performance, it leads to much larger training times due to highly sequential training. To address this issue, we further propose a new strategy which augments a training segment with an initial value of the target variable from the timestep right before the starting of the training segment. In other words, we provide an initial value of the target variable as additional input so that the network can focus on learning changes relative to that initial value. By using this strategy, samples can be passed in any order (mini-batch training) which significantly reduces the training time while maintaining the performance. In demonstrating the utility of our approach in hydrological modeling, we observe that the most significant gains in predictive accuracy occur when these methods are applied to state variables whose values change more slowly, such as soil water and snowpack, rather than continuously moving flux variables such as streamflow.

Original languageEnglish (US)
Title of host publication2023 SIAM International Conference on Data Mining, SDM 2023
PublisherSociety for Industrial and Applied Mathematics Publications
Pages649-657
Number of pages9
ISBN (Electronic)9781611977653
StatePublished - 2023
Event2023 SIAM International Conference on Data Mining, SDM 2023 - Minneapolis, United States
Duration: Apr 27 2023Apr 29 2023

Publication series

Name2023 SIAM International Conference on Data Mining, SDM 2023

Conference

Conference2023 SIAM International Conference on Data Mining, SDM 2023
Country/TerritoryUnited States
CityMinneapolis
Period4/27/234/29/23

Bibliographical note

Publisher Copyright:
Copyright © 2023 by SIAM.

Fingerprint

Dive into the research topics of 'Mini-Batch Learning Strategies for modeling long term temporal dependencies: A study in environmental applications'. Together they form a unique fingerprint.

Cite this