Neuronix enables continuous, simultaneous neural recording and electrical microstimulation

Zhi Yang, Jian Xu, Anh Tuan Nguyen, Tong Wu, Wenfeng Zhao, Wing Kin Tam

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4451-4454
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'Neuronix enables continuous, simultaneous neural recording and electrical microstimulation'. Together they form a unique fingerprint.

Cite this