Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer.

Curtis T. Rueden, Matthew W. Conklin, Paolo P. Provenzano, Patricia J. Keely, Kevin W. Eliceiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Recently, new non-invasive imaging methods have been developed and applied to cellular and animal mammary models that have enabled breast cancer researchers to track key players and events in mammary metastasis. Noninvasive nonlinear optical methods such as multiphoton laser scanning microscopy (MPLSM), Fluorescence Lifetime Microscopy (FLIM) and second harmonic generation (SHG) imaging provide an unrivaled ability for obtaining high-resolution images from deep within tissue that can be exploited in the quest to understand breast cancer progression. These optical methods can add greatly to our knowledge of cancer progression by allowing key processes to be non-invasively imaged such as metabolism (on the basis of free and bound NADH detection via FLIM) and interactions with the extracellular matrix (SHG imaging of collagen). In this short application note we present a survey of our latest optical and computational efforts to study intrinsic fluorescence in breast cancer models. In particular we present the latest development in our SLIM Plotter application, an open source visualization program for interactive visualization and inspection of combined spectral lifetime (SLIM) data.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages4077-4080
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer.'. Together they form a unique fingerprint.

Cite this