Novel determination of effective freeze–thaw cycles as drivers of ecosystem change

Edward P. Boswell, Anita M. Thompson, Nick J. Balster, Alex W. Bajcz

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Soil freeze–thaw cycles (FTCs) profoundly influence biophysical conditions and modify biogeochemical processes across many northern-hemisphere and alpine ecosystems. How FTCs will contribute to global processes in seasonally snow-covered ecosystems in the future is of particular importance as climate change progresses and winter snowpacks decline. Our understanding of these contributions is limited because there has been little consideration of inter- and intrayear variability in the characteristics of FTCs, in part due to a limited appreciation for which of these characteristics matters most with respect to a given biogeochemical process. Here, we introduce the concept of effective FTCs: those that are most likely linked to changes in key soil processes. We also propose a set of parameters to quantify and characterize effective FTCs using standard field soil temperature data. To put these proposed parameters into effective practice, we present FTCQuant, an R package of functions that quantifies FTCs based on a set of user-defined parameter criteria and, importantly, summarizes the individual characteristics of each FTC counted. To demonstrate the utility of these new concepts and tools, we applied the FTCQuant package to re-analyze data from two published studies to help explain over-winter changes to N2O emissions and wet-aggregate stability. We found that effective FTCs would be defined differently for each of these response variables and that effective FTCs provided a 76 and 33% increase in model fit for wet-aggregate stability and cumulative N2O emission, respectively, relative to conventional FTC quantification methods focusing on fluctuations around 0 °C. These results demonstrate the importance of identifying effective FTCs when scaling soil processes to regional or global levels. We hope our contributions will inform future deductions, hypothesis generation, and experimentation with respect to expected changes in freeze–thaw cycling globally.

Original languageEnglish (US)
Pages (from-to)314-323
Number of pages10
JournalJournal of Environmental Quality
Volume49
Issue number2
DOIs
StatePublished - Mar 1 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

Fingerprint

Dive into the research topics of 'Novel determination of effective freeze–thaw cycles as drivers of ecosystem change'. Together they form a unique fingerprint.

Cite this