Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Human Neuroblastoma Cells

Medjda Bellamri, Kyle Brandt, Kari Cammerrer, Tauqeerunnisa Syeda, Robert J. Turesky, Jason R. Cannon

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Animal fat and iron-rich diets are risk factors for Parkinson’s disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.

Original languageEnglish (US)
Pages (from-to)1361-1373
Number of pages13
JournalChemical research in toxicology
Volume36
Issue number8
DOIs
StatePublished - Aug 21 2023

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

Fingerprint

Dive into the research topics of 'Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Human Neuroblastoma Cells'. Together they form a unique fingerprint.

Cite this