Oscillatory flow in the human airways from the mouth through several bronchial generations

Andrew J. Banko, Filippo Coletti, Christopher J. Elkins, John K. Eaton

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The time-varying flow is studied experimentally in an anatomically accurate model of the human airways from the mouth through several generations of bronchial branching. The airway geometry is obtained from the CT scan of a healthy adult male of normal height and build. The three-component, three-dimensional mean velocity field is obtained throughout the entire model using phase-locked Magnetic Resonance Velocimetry. A pulsatile pump drives a sinusoidal waveform (inhalation and exhalation) with frequency and stroke-length such that the mean trachea Reynolds number at peak inspiration is 4200 and the Womersley number is 7. Integral parameters are defined to quantify the degree of velocity profile non-uniformity (related to axial dispersion) and secondary flow strength (lateral dispersion). It is found that the extrathoracic airways significantly modify the tracheal flow and that the flow at the first bifurcation is highly asymmetric. The effect of flow oscillation is to produce time dependent flow features which are asymmetric with respect to the acceleration and deceleration periods surrounding peak inhalation and exhalation. This is most pronounced in regions of separation and on the secondary flow structure, which are sensitive to local attributes of the real anatomy. This is reflected in the integral parameters, which behave non-monotonically between successive bronchial generations. In general, the measured oscillatory flow in a realistic anatomy confirms many trends derived from idealized models but also possesses qualitatively different large scale flow structures as compared to idealized representations of the upper airways.

Original languageEnglish (US)
Pages (from-to)45-57
Number of pages13
JournalInternational Journal of Heat and Fluid Flow
Volume61
DOIs
StatePublished - Oct 1 2016

Bibliographical note

Publisher Copyright:
© 2016 Elsevier Inc.

Keywords

  • Experimental fluid mechanics
  • Magnetic resonance velocimetry
  • Pulsatile flow
  • Realistic anatomy
  • Respiratory flow

Fingerprint

Dive into the research topics of 'Oscillatory flow in the human airways from the mouth through several bronchial generations'. Together they form a unique fingerprint.

Cite this