Output feedback based high-order sliding mode control design of electrohydraulic system using an exact differentiator

Hao Sun, Zongxuan Sun, Shihua Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electrohydraulic systems, which have been widely used in a broad range of applications, are a typical nonlinear system with uncertainties. The presence of nonlinearities, parameter variations degrades the performance of linear controllers, such as the PID controller. As one of the most robust control strategies, sliding mode control methods attract the attention of researchers and are applied to electrohydraulic systems. However, for many applications, only the piston position measurement information is available. Owing to the existence of the nonlinear orifice equation, the observer design is a challenging task and satisfactory performance is not guaranteed in the existing literature. Therefore, an output feedback based high-order sliding mode control (HOSMC) design of electrohydraulic systems is proposed in this paper. By using an exact differentiator, the derivatives of the tracking error are obtained and used to construct the HOSMC. Compared to the conventional sliding mode control (SMC), the HOSMC can achieve a finite-time convergence and improved tracking accuracy. To verify the tracking performance, a simulation is performed on a camless engine valve actuation system.

Original languageEnglish (US)
Title of host publicationCCTA 2021 - 5th IEEE Conference on Control Technology and Applications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages759-764
Number of pages6
ISBN (Electronic)9781665436434
DOIs
StatePublished - 2021
Event5th IEEE Conference on Control Technology and Applications, CCTA 2021 - Virtual, San Diego, United States
Duration: Aug 8 2021Aug 11 2021

Publication series

NameCCTA 2021 - 5th IEEE Conference on Control Technology and Applications

Conference

Conference5th IEEE Conference on Control Technology and Applications, CCTA 2021
Country/TerritoryUnited States
CityVirtual, San Diego
Period8/8/218/11/21

Bibliographical note

Funding Information:
*This work was supported in part by the Fundamental Research Funds for the Central Universities and in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX19 0085 1Hao Sun and Shihua Li (the corresponding author) are with the School of Automation, Southeast University, Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, PR China sun hao@seu.edu.cn, lsh@seu.edu.cn 2Zongxuan Sun is with the Department of Mechanical Engineering, University of Minnesota-Twin cities, Minneapolis, Minnesota, 55455, USA zsun@umn.edu

Publisher Copyright:
© 2021 IEEE.

Fingerprint

Dive into the research topics of 'Output feedback based high-order sliding mode control design of electrohydraulic system using an exact differentiator'. Together they form a unique fingerprint.

Cite this