PHEIGES: all-cell-free phage synthesis and selection from engineered genomes

Antoine Levrier, Ioannis Karpathakis, Bruce Nash, Steven D. Bowden, Ariel B. Lindner, Vincent Noireaux

Research output: Contribution to journalArticlepeer-review

Abstract

Bacteriophages constitute an invaluable biological reservoir for biotechnology and medicine. The ability to exploit such vast resources is hampered by the lack of methods to rapidly engineer, assemble, package genomes, and select phages. Cell-free transcription-translation (TXTL) offers experimental settings to address such a limitation. Here, we describe PHage Engineering by In vitro Gene Expression and Selection (PHEIGES) using T7 phage genome and Escherichia coli TXTL. Phage genomes are assembled in vitro from PCR-amplified fragments and directly expressed in batch TXTL reactions to produce up to 1011 PFU/ml engineered phages within one day. We further demonstrate a significant genotype-phenotype linkage of phage assembly in bulk TXTL. This enables rapid selection of phages with altered rough lipopolysaccharides specificity from phage genomes incorporating tail fiber mutant libraries. We establish the scalability of PHEIGES by one pot assembly of such mutants with fluorescent gene integration and 10% length-reduced genome.

Original languageEnglish (US)
Article number2223
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'PHEIGES: all-cell-free phage synthesis and selection from engineered genomes'. Together they form a unique fingerprint.

Cite this