Reciprocal variable feedback: Induced sensing for nonlinear systems design and control

Aristides Gogoussis, Max Donath

Research output: Contribution to journalArticlepeer-review

Abstract

System performance can be significantly improved when both the design of the plant and of the controller are considered concurrently. Control theory can be applied to a broad variety of systems, including those that are physical in nature and many that are not. Despite the generality of control theory, there are many situations in which opportunities are missed for using less conservative control laws and simpler overall implementations. This is due to the use of formulations that do not explicitly reveal the existence of intrinsic information pertaining to the particular domain of application. Such is the case with many physical systems. However, the various constraints associated with physical reality (in the form of principles, laws, etc.) open up several possibilities which can be exploited for system design and control. In this paper, we propose the Reciprocal Variable Feedback principle as a means for facilitating the control of plants with complicated nonlinear dynamics in the presence of parameter and/or structural uncertainty. The RVF principle exploits the effort-flow relationships associated with power interactions in order to assist in the design and control of physical processes. This is accomplished by using appropriate sensors instead of computation based on models (e.g., feedback linearization) and can be implemented within many physical domains. A motion control example is used to provide insight into the nature of the principle. It is expected that in the future, additional principles will be identified and introduced for integrating design with the control of dynamical systems.

Original languageEnglish (US)
Pages (from-to)157-163
Number of pages7
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Volume120
Issue number2
DOIs
StatePublished - Jun 1998

Fingerprint

Dive into the research topics of 'Reciprocal variable feedback: Induced sensing for nonlinear systems design and control'. Together they form a unique fingerprint.

Cite this