Reconstruction of stereoscopic CTA events using deep learning with CTLearn

THE CTA CONSORTIUM

Research output: Contribution to journalConference articlepeer-review

Abstract

The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.

Original languageEnglish (US)
Article number730
JournalProceedings of Science
Volume395
StatePublished - Mar 18 2022
Externally publishedYes
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

Bibliographical note

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

Fingerprint

Dive into the research topics of 'Reconstruction of stereoscopic CTA events using deep learning with CTLearn'. Together they form a unique fingerprint.

Cite this