Replication Timing Networks: a novel class of gene regulatory networks

Juan Carlos Rivera Mulia, Sebo Kim, Haitham Gabr, Tamer Kahveci, David M. Gilbert

Research output: Contribution to journalArticle

Abstract

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create RT networks composed of specific functional sub-network communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs), by combining them into more complex circuitries of composite and bipartite networks. Our findings show that RT networks can be exploited to dissect the cellular mechanisms that regulate lineage specification and cellular identity maintenance.
Original languageEnglish (US)
Article number186866
JournalbioRxiv
DOIs
StatePublished - Sep 10 2017

Fingerprint

Dive into the research topics of 'Replication Timing Networks: a novel class of gene regulatory networks'. Together they form a unique fingerprint.

Cite this