Search for Neutrino-Induced Neutral-Current Δ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess under a Single-Photon Hypothesis

(MicroBooNE Collaboration)

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8» GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80×1020 protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state (1γ1p and 1γ0p, respectively). The background is constrained via an in situ high-purity measurement of NC π0 events, made possible via dedicated 2γ1p and 2γ0p selections. A total of 16 and 153 events are observed for the 1γ1p and 1γ0p selections, respectively, compared to a constrained background prediction of 20.5±3.65(syst) and 145.1±13.8(syst) events. The data lead to a bound on an anomalous enhancement of the normalization of NC Δ radiative decay of less than 2.3 times the predicted nominal rate for this process at the 90% confidence level (C.L.). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of 3.18 times the nominal NC Δ radiative decay rate at the 94.8% C.L., in favor of the nominal prediction, and represents a greater than 50-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range.

Original languageEnglish (US)
Article number111801
JournalPhysical review letters
Volume128
Issue number11
DOIs
StatePublished - Mar 18 2022

Bibliographical note

Publisher Copyright:
© 2022 authors. Published by the American Physical Society.

Fingerprint

Dive into the research topics of 'Search for Neutrino-Induced Neutral-Current Δ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess under a Single-Photon Hypothesis'. Together they form a unique fingerprint.

Cite this