Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling

Gangsheng Wang, Qun Gao, Yunfeng Yang, Sarah E. Hobbie, Peter B. Reich, Jizhong Zhou

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.

Original languageEnglish (US)
Pages (from-to)1935-1950
Number of pages16
JournalGlobal change biology
Volume28
Issue number5
DOIs
StatePublished - Mar 2022

Bibliographical note

Publisher Copyright:
© 2021 John Wiley & Sons Ltd.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling'. Together they form a unique fingerprint.

Cite this