Solid-source metal-organic MBE for elemental Ir and Ru films

Sreejith Nair, Kyle Noordhoek, Dooyong Lee, Christopher J. Bartel, Bharat Jalan

Research output: Contribution to journalArticlepeer-review

Abstract

Thin films of elemental metals play a very important role in modern electronic nano-devices as conduction pathways, spacer layers, spin-current generators/detectors, and many other important functionalities. In this work, by exploiting the chemistry of solid metal-organic source precursors, we demonstrate the molecular beam epitaxy synthesis of elemental Ir and Ru metal thin films. The synthesis of these metals is enabled by thermodynamic and kinetic selection of the metal phase as the metal-organic precursor decomposes on the substrate surface. Film growth under different conditions was studied using a combination of in situ and ex situ structural and compositional characterization techniques. The critical role of substrate temperature, oxygen reactivity, and precursor flux in tuning film composition and quality is discussed in the context of precursor adsorption, decomposition, and crystal growth. Computed thermodynamics quantifies the driving force for metal or oxide formation as a function of synthesis conditions and changes in chemical potential. These results indicate that bulk thermodynamics are a plausible origin for the formation of Ir metal at low temperatures, while Ru metal formation is likely mediated by kinetics.

Original languageEnglish (US)
Article number062701
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume41
Issue number6
DOIs
StatePublished - Dec 1 2023

Bibliographical note

Publisher Copyright:
© 2023 Author(s).

Fingerprint

Dive into the research topics of 'Solid-source metal-organic MBE for elemental Ir and Ru films'. Together they form a unique fingerprint.

Cite this