The Acceleration and Confinement of Energetic Electrons by a Termination Shock in a Magnetic Trap: An Explanation for Nonthermal Loop-top Sources during Solar Flares

Xiangliang Kong, Fan Guo, Chengcai Shen, Bin Chen, Yao Chen, Sophie Musset, Lindsay Glesener, Peera Pongkitiwanichakul, Joe Giacalone

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Nonthermal loop-top sources in solar flares are the most prominent observational signatures that suggest energy release and particle acceleration in the solar corona. Although several scenarios for particle acceleration have been proposed, the origin of the loop-top sources remains unclear. Here we present a model that combines a large-scale magnetohydrodynamic simulation of a two-ribbon flare with a particle acceleration and transport model for investigating electron acceleration by a fast-mode termination shock (TS) at the loop top. Our model provides spatially resolved electron distribution that evolves in response to the dynamic flare geometry. We find a concave-downward magnetic structure located below the flare TS, induced by the fast reconnection downflows. It acts as a magnetic trap to confine the electrons at the loop top for an extended period of time. The electrons are energized significantly as they cross the shock front, and eventually build up a power-law energy spectrum extending to hundreds of kiloelectron volts. We suggest that this particle acceleration and transport scenario driven by a flare TS is a viable interpretation for the observed nonthermal loop-top sources.

Original languageEnglish (US)
Article numberL37
JournalAstrophysical Journal Letters
Volume887
Issue number2
DOIs
StatePublished - Dec 20 2019

Bibliographical note

Funding Information:
Xiangliang Kong Fan Guo Chengcai Shen Bin Chen Yao Chen Sophie Musset Lindsay Glesener Peera Pongkitiwanichakul Joe Giacalone Xiangliang Kong Fan Guo Chengcai Shen Bin Chen Yao Chen Sophie Musset Lindsay Glesener Peera Pongkitiwanichakul Joe Giacalone Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209, People’s Republic of China State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China Los Alamos National Laboratory, Los Alamos, NM 87545, USA New Mexico Consortium, 4200 West Jemez Road, Los Alamos, NM 87544, USA Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Dr. Martin Luther King Boulevard, Newark, NJ 07102, USA School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA Xiangliang Kong (孔祥良), Fan Guo (郭帆), Chengcai Shen (沈呈彩), Bin Chen (陈彬), Yao Chen (陈耀), Sophie Musset, Lindsay Glesener, Peera Pongkitiwanichakul and Joe Giacalone 2019-12-20 2019-12-20 14:47:10 cgi/release: Article released bin/incoming: New from .zip Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. yes Nonthermal loop-top sources in solar flares are the most prominent observational signatures that suggest energy release and particle acceleration in the solar corona. Although several scenarios for particle acceleration have been proposed, the origin of the loop-top sources remains unclear. Here we present a model that combines a large-scale magnetohydrodynamic simulation of a two-ribbon flare with a particle acceleration and transport model for investigating electron acceleration by a fast-mode termination shock (TS) at the loop top. Our model provides spatially resolved electron distribution that evolves in response to the dynamic flare geometry. We find a concave-downward magnetic structure located below the flare TS, induced by the fast reconnection downflows. It acts as a magnetic trap to confine the electrons at the loop top for an extended period of time. The electrons are energized significantly as they cross the shock front, and eventually build up a power-law energy spectrum extending to hundreds of kiloelectron volts. We suggest that this particle acceleration and transport scenario driven by a flare TS is a viable interpretation for the observed nonthermal loop-top sources. � 2019 The Author(s). Published by the American Astronomical Society. Aschwanden M. J., Caspi A., Cohen C. M. S. et al 2017 ApJ 836 17 10.3847/1538-4357/836/1/17 Aschwanden M. J., Caspi A., Cohen C. M. S. et al ApJ 0004-637X 836 1 17 2017 17 Benz A. O. 2017 LRSP 14 2 10.1007/s41116-016-0004-3 Benz A. O. LRSP 14 2017 2 Chen B., Bastian T. S., Shen C. et al 2015 Sci 350 1238 10.1126/science.aac8467 Chen B., Bastian T. S., Shen C. et al Sci 350 2015 1238 Chen B., Shen C., Reeves K. K., Guo F. and Yu S. 2019 ApJ 884 63 10.3847/1538-4357/ab3c58 Chen B., Shen C., Reeves K. K., Guo F. and Yu S. ApJ 0004-637X 884 1 63 2019 63 Dennis B. R., Duval-Poo M. A., Piana M. et al 2018 ApJ 867 82 10.3847/1538-4357/aae0f5 Dennis B. R., Duval-Poo M. A., Piana M. et al ApJ 0004-637X 867 1 82 2018 82 Drake J. F., Swisdak M., Che H. and Shay M. A. 2006 Natur 443 553 10.1038/nature05116 Drake J. F., Swisdak M., Che H. and Shay M. A. Natur 443 2006 553 Emslie A. G., Dennis B. R., Shih A. Y. et al 2012 ApJ 759 71 10.1088/0004-637X/759/1/71 Emslie A. G., Dennis B. R., Shih A. Y. et al ApJ 0004-637X 759 1 71 2012 71 Forbes T. G. 1986 ApJ 305 553 10.1086/164268 Forbes T. G. ApJ 305 1986 553 Gary D. E., Chen B., Dennis B. R. et al 2018 ApJ 863 83 10.3847/1538-4357/aad0ef Gary D. E., Chen B., Dennis B. R. et al ApJ 0004-637X 863 1 83 2018 83 Giacalone J. and Jokipii J. R. 1999 ApJ 520 204 10.1086/307452 Giacalone J. and Jokipii J. R. ApJ 0004-637X 520 1 204 1999 204 Giacalone J. and Neugebauer M. 2008 ApJ 673 629 10.1086/524008 Giacalone J. and Neugebauer M. ApJ 0004-637X 673 1 629 2008 629 Guo F. and Giacalone J. 2010 ApJ 715 406 10.1088/0004-637X/715/1/406 Guo F. and Giacalone J. ApJ 0004-637X 715 1 406 2010 406 Guo F. and Giacalone J. 2012 ApJ 753 28 10.1088/0004-637X/753/1/28 Guo F. and Giacalone J. ApJ 0004-637X 753 1 28 2012 28 Guo F., Jokipii J. R. and Kota J. 2010 ApJ 725 128 10.1088/0004-637X/725/1/128 Guo F., Jokipii J. R. and Kota J. ApJ 0004-637X 725 1 128 2010 128 Jokipii J. R. 1971 RvGeo 9 27 10.1029/RG009i001p00027 Jokipii J. R. RvGeo 9 1971 27 Jokipii J. R. 1987 ApJ 313 842 10.1086/165022 Jokipii J. R. ApJ 313 1987 842 Jokipii J. R. and Giacalone J. 2007 ApJ 660 336 10.1086/513064 Jokipii J. R. and Giacalone J. ApJ 0004-637X 660 1 336 2007 336 Kong X., Chen Y., Guo F. et al 2015 ApJ 798 81 10.1088/0004-637X/798/2/81 Kong X., Chen Y., Guo F. et al ApJ 0004-637X 798 2 81 2015 81 Kong X., Chen Y., Guo F. et al 2016 ApJ 821 32 10.3847/0004-637X/821/1/32 Kong X., Chen Y., Guo F. et al ApJ 0004-637X 821 1 32 2016 32 Kong X., Guo F., Chen Y. and Giacalone J. 2019 ApJ 883 49 10.3847/1538-4357/ab3848 Kong X., Guo F., Chen Y. and Giacalone J. ApJ 0004-637X 883 1 49 2019 49 Kong X., Guo F., Giacalone J., Li H. and Chen Y. 2017 ApJ 851 38 10.3847/1538-4357/aa97d7 Kong X., Guo F., Giacalone J., Li H. and Chen Y. ApJ 0004-637X 851 1 38 2017 38 Kontar E. P., Bian N. H., Emslie A. G. and Vilmer N. 2014 ApJ 780 176 10.1088/0004-637X/780/2/176 Kontar E. P., Bian N. H., Emslie A. G. and Vilmer N. ApJ 0004-637X 780 2 176 2014 176 Krucker S. and Battaglia M. 2014 ApJ 780 107 10.1088/0004-637X/780/1/107 Krucker S. and Battaglia M. ApJ 0004-637X 780 1 107 2014 107 Krucker S., Hudson H. S., Glesener L. et al 2010 ApJ 714 1108 10.1088/0004-637X/714/2/1108 Krucker S., Hudson H. S., Glesener L. et al ApJ 0004-637X 714 2 1108 2010 1108 Lazarian A., Vlahos L., Kowal G. et al 2012 SSRv 173 557 10.1007/s11214-012-9936-7 Lazarian A., Vlahos L., Kowal G. et al SSRv 173 2012 557 Li G., Kong X., Zank G. and Chen Y. 2013a ApJ 769 22 10.1088/0004-637X/769/1/22 Li G., Kong X., Zank G. and Chen Y. ApJ 0004-637X 769 1 22 2013 22 Li T. C., Drake J. F. and Swisdak M. 2013b ApJ 778 144 10.1088/0004-637X/778/2/144 Li T. C., Drake J. F. and Swisdak M. ApJ 0004-637X 778 2 144 2013 144 Li X., Guo F., Li H. and Birn J. 2018a ApJ 855 80 10.3847/1538-4357/aaacd5 Li X., Guo F., Li H. and Birn J. ApJ 0004-637X 855 2 80 2018 80 Li X., Guo F., Li H. and Li S. 2018b ApJ 866 4 10.3847/1538-4357/aae07b Li X., Guo F., Li H. and Li S. ApJ 0004-637X 866 1 4 2018 4 Liu W., Chen Q. and Petrosian V. 2013 ApJ 767 168 10.1088/0004-637X/767/2/168 Liu W., Chen Q. and Petrosian V. ApJ 0004-637X 767 2 168 2013 168 Liu W., Petrosian V., Dennis B. R. and Jiang Y. W. 2008 ApJ 676 704 10.1086/527538 Liu W., Petrosian V., Dennis B. R. and Jiang Y. W. ApJ 0004-637X 676 1 704 2008 704 Magara T., Mineshige S., Yokoyama T. and Shibata K. 1996 ApJ 466 1054 10.1086/177575 Magara T., Mineshige S., Yokoyama T. and Shibata K. ApJ 466 1996 1054 Mann G., Warmuth A. and Aurass H. 2009 A&A 494 669 10.1051/0004-6361:200810099 Mann G., Warmuth A. and Aurass H. A&A 0004-6361 494 2009 669 Masuda S., Kosugi T., Hara H., Tsuneta S. and Ogawara Y. 1994 Natur 371 495 10.1038/371495a0 Masuda S., Kosugi T., Hara H., Tsuneta S. and Ogawara Y. Natur 371 1994 495 McLaughlin J. A., Nakariakov V. M., Dominique M., Jelínek P. and Takasao S. 2018 SSRv 214 45 10.1007/s11214-018-0478-5 McLaughlin J. A., Nakariakov V. M., Dominique M., Jelínek P. and Takasao S. SSRv 214 2018 45 Melnikov V. F., Shibasaki K. and Reznikova V. E. 2002 ApJL 580 L185 10.1086/345587 Melnikov V. F., Shibasaki K. and Reznikova V. E. ApJL 0004-637X 580 2002 L185 Miller J. A., Cargill P. J., Emslie A. G. et al 1997 JGR 102 14631 10.1029/97JA00976 Miller J. A., Cargill P. J., Emslie A. G. et al JGR 0148-0227 102 1997 14631 Miller J. A., Larosa T. N. and Moore R. L. 1996 ApJ 461 445 10.1086/177072 Miller J. A., Larosa T. N. and Moore R. L. ApJ 461 1996 445 Musset S., Kontar E. P. and Vilmer N. 2018 A&A 610 A6 10.1051/0004-6361/201731514 Musset S., Kontar E. P. and Vilmer N. A&A 0004-6361 610 2018 A6 Nakariakov V. M. and Melnikov V. F. 2009 SSRv 149 119 10.1007/s11214-009-9536-3 Nakariakov V. M. and Melnikov V. F. SSRv 149 2009 119 Oka M., Birn J., Battaglia M. et al 2018 SSRv 214 82 10.1007/s11214-018-0515-4 Oka M., Birn J., Battaglia M. et al SSRv 214 2018 82 Oka M., Krucker S., Hudson H. S. and Saint-Hilaire P. 2015 ApJ 799 129 10.1088/0004-637X/799/2/129 Oka M., Krucker S., Hudson H. S. and Saint-Hilaire P. ApJ 0004-637X 799 2 129 2015 129 Oka M., Phan T. D., Krucker S. et al 2010 ApJ 714 915 10.1088/0004-637X/714/1/915 Oka M., Phan T. D., Krucker S. et al ApJ 0004-637X 714 1 915 2010 915 Parker E. N. 1965 P&SS 13 9 10.1016/0032-0633(65)90131-5 Parker E. N. P&SS 0032-0633 13 1965 9 Pesce-Rollins M., Omodei N., Petrosian V. et al 2015 ApJL 805 L15 10.1088/2041-8205/805/2/L15 Pesce-Rollins M., Omodei N., Petrosian V. et al ApJL 0004-637X 805 2015 L15 Petrosian V. and Liu S. 2004 ApJ 610 550 10.1086/421486 Petrosian V. and Liu S. ApJ 0004-637X 610 1 550 2004 550 Pongkitiwanichakul P. and Chandran B. D. G. 2014 ApJ 796 45 10.1088/0004-637X/796/1/45 Pongkitiwanichakul P. and Chandran B. D. G. ApJ 0004-637X 796 1 45 2014 45 Seaton D. B. and Forbes T. G. 2009 ApJ 701 348 10.1088/0004-637X/701/1/348 Seaton D. B. and Forbes T. G. ApJ 0004-637X 701 1 348 2009 348 Shen C., Kong X., Guo F., Raymond J. C. and Chen B. 2018 ApJ 869 116 10.3847/1538-4357/aaeed3 Shen C., Kong X., Guo F., Raymond J. C. and Chen B. ApJ 0004-637X 869 2 116 2018 116 Shibata K. and Magara T. 2011 LRSP 8 6 10.12942/lrsp-2011-6 Shibata K. and Magara T. LRSP 8 2011 6 Simões P. J. A. and Kontar E. P. 2013 A&A 551 A135 10.1051/0004-6361/201220304 Simões P. J. A. and Kontar E. P. A&A 0004-6361 551 2013 A135 Stone J. M., Gardiner T. A., Teuben P., Hawley J. F. and Simon J. B. 2008 ApJS 178 137 10.1086/588755 Stone J. M., Gardiner T. A., Teuben P., Hawley J. F. and Simon J. B. ApJS 0067-0049 178 1 137 2008 137 Sun J., Gao X., Lu Q. and Wang S. 2019 Ap&SS 364 116 10.1007/s10509-019-3610-4 Sun J., Gao X., Lu Q. and Wang S. Ap&SS 0004-640X 364 2019 116 Takahashi T., Qiu J. and Shibata K. 2017 ApJ 848 102 10.3847/1538-4357/aa8f97 Takahashi T., Qiu J. and Shibata K. ApJ 0004-637X 848 2 102 2017 102 Takasao S., Matsumoto T., Nakamura N. and Shibata K. 2015 ApJ 805 135 10.1088/0004-637X/805/2/135 Takasao S., Matsumoto T., Nakamura N. and Shibata K. ApJ 0004-637X 805 2 135 2015 135 Takasao S. and Shibata K. 2016 ApJ 823 150 10.3847/0004-637X/823/2/150 Takasao S. and Shibata K. ApJ 0004-637X 823 2 150 2016 150 Tsuneta S. and Naito T. 1998 ApJL 495 L67 10.1086/311207 Tsuneta S. and Naito T. ApJL 0004-637X 495 1998 L67 Wu C. S. 1984 JGR 89 8857 10.1029/JA089iA10p08857 Wu C. S. JGR 0148-0227 89 1984 8857 Yokoyama T. and Shibata K. 1998 ApJL 494 L113 10.1086/311174 Yokoyama T. and Shibata K. ApJL 0004-637X 494 1998 L113 Yokoyama T. and Shibata K. 2001 ApJ 549 1160 10.1086/319440 Yokoyama T. and Shibata K. ApJ 0004-637X 549 2 1160 2001 1160

Publisher Copyright:
© 2019 The Author(s). Published by the American Astronomical Society..

Fingerprint

Dive into the research topics of 'The Acceleration and Confinement of Energetic Electrons by a Termination Shock in a Magnetic Trap: An Explanation for Nonthermal Loop-top Sources during Solar Flares'. Together they form a unique fingerprint.

Cite this