The conserved carboxyl-terminal half of herpes simplex virus type 1 regulatory protein ICP27 is dispensable for viral growth in the presence of compensatory mutations

S. M. Bunnell, S. A. Rice

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

ICP27 is an essential herpes simplex virus type 1 (HSV-1) immediate-early protein that regulates viral gene expression by poorly characterized mechanisms. Previous data suggest that its carboxyl (C)-terminal portion is absolutely required for productive viral infection. In this study, we isolated M16R, a second-site revertant of a viral ICP27 C-terminal mutant. M16R harbors an intragenic reversion, as demonstrated by the fact that its cloned ICP27 allele can complement the growth of an HSV-1 ICP27 deletion mutant. DNA sequencing demonstrated that the intragenic reversion is a frameshift alteration in a homopolymeric run of C residues at codons 215 to 217. This results in the predicted expression of a truncated, 289-residue molecule bearing 72 novel C-terminal residues derived from the +1 reading frame. Consistent with this, M16R expresses an ICP27-related molecule of the predicted size in the nuclei of infected cells. Transfection-based viral complementation assays confirmed that the truncated, frameshifted protein can partially substitute for ICP27 in the context of viral infection. Surprisingly, its novel C-terminal residues are required for this activity. To see if the frameshift mutation is all that is required for M16R's viability, we re-engineered the M16R ICP27 allele and inserted it into a new viral background, creating the HSV-1 mutant M16exC. An additional mutant, exCd305, was constructed which possesses the frameshift in the context of an ICP27 gene with the C terminus deleted. We found that both M16exC and exCd305 are nonviable in Veto cells, suggesting that one or more extragenic mutations are also required for the viability of M16R. Consistent with this interpretation, we isolated two viable derivatives of exCd305 which grow productively in Vero cells despite being incapable of encoding the C-terminal portion of ICP27. Studies of viral DNA synthesis in mutant-infected cells indicated that the truncated, frameshifted ICP27 protein can enhance viral DNA replication. In summary, our results demonstrate that the C-terminal portion of ICP27, conserved widely in herpesviruses and previously believed to be absolutely essential, is dispensable for HSV-1 lytic replication in the presence of compensatory genomic mutations.

Original languageEnglish (US)
Pages (from-to)7362-7374
Number of pages13
JournalJournal of virology
Volume74
Issue number16
DOIs
StatePublished - 2000

Fingerprint

Dive into the research topics of 'The conserved carboxyl-terminal half of herpes simplex virus type 1 regulatory protein ICP27 is dispensable for viral growth in the presence of compensatory mutations'. Together they form a unique fingerprint.

Cite this