The endothelial Dll4–muscular Notch2 axis regulates skeletal muscle mass

Shin Fujimaki, Tomohiro Matsumoto, Masashi Muramatsu, Hiroshi Nagahisa, Naoki Horii, Daiki Seko, Shinya Masuda, Xuerui Wang, Yoko Asakura, Yukie Takahashi, Yuta Miyamoto, Shingo Usuki, Kei ichiro Yasunaga, Yasutomi Kamei, Ryuichi Nishinakamura, Takashi Minami, Takaichi Fukuda, Atsushi Asakura, Yusuke Ono

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell–cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell–cell contact. Inhibition of the Dll4–Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4–muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.

Original languageEnglish (US)
Pages (from-to)180-189
Number of pages10
JournalNature Metabolism
Volume4
Issue number2
DOIs
StatePublished - Feb 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'The endothelial Dll4–muscular Notch2 axis regulates skeletal muscle mass'. Together they form a unique fingerprint.

Cite this