Verification of Newly FDA-Approved Kappa and Lambda Free Light Chain Assays on a Previously Untested Platform

Penn Muluhngwi, Cierra N. Sharp, Nicole Pozzi, Ronald J. Elin, Saeed A. Jortani

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Background: κ and λ free light chains (FLCs) are monitored to aid in the diagnosis of plasma cell disorders. Our goal was to validate the Diazyme Human κ and λ assays on Beckman Coulter UniCel DxC 800 Synchron and compare to Freelite κ and λ assays on Roche Cobas Integra. Methods: Linearity verification, within- and between-run precision, method comparison, and reference range (RR) verification were conducted using CLSI guidelines. Statistical analysis was performed using EP Evaluator®. Mean, SD, CV, and bias were determined. Results: Diazyme κ FLC assay was linear within 0.00 –191.00 mg/L. Diazyme λ FLC assay was linear within 0.00 –205.30 mg/L. Diazyme κ FLC QC1 had a mean of 16.70 mg/L, CV of 7.0%. QC2 had a mean of 33.37 mg/L, CV of 2.6%. Diazyme λ FLC QC1 had a mean of 21.73 mg/L, CV of 2.3%. QC2 had a mean of 42.05 mg/L, CV of 1.5%. Bias of DxC-Diazyme FLCs compared to Integra-Freelite FLCs was −2.55 mg/L (κ FLC), and 4.54 mg/L (λ FLC). Qualitative comparison of κ FLC assays indicated 100% agreement for both normal and abnormal values. For λ FLC assay, agreement was 95% for normal values and 75% for abnormal values. For κ/λ ratio there was 50% agreement for normal values, and 100% for abnormal values. For RR verification, 1 sample was outside the Diazyme κ RR. For λ, all samples were within the manufacturer's RR. Conclusions: Diazyme assays for FLCs have excellent precision and accuracy and are comparable to Freelite assays.

Original languageEnglish (US)
Pages (from-to)323-330
Number of pages8
JournalThe journal of applied laboratory medicine
Volume4
Issue number3
DOIs
StatePublished - Nov 1 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 American Association for Clinical Chemistry.

Fingerprint

Dive into the research topics of 'Verification of Newly FDA-Approved Kappa and Lambda Free Light Chain Assays on a Previously Untested Platform'. Together they form a unique fingerprint.

Cite this